Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.

Identifieur interne : 001657 ( Main/Exploration ); précédent : 001656; suivant : 001658

Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.

Auteurs : R Andres Floto [Royaume-Uni] ; Sovan Sarkar ; Ethan O. Perlstein ; Beate Kampmann ; Stuart L. Schreiber ; David C. Rubinsztein

Source :

RBID : pubmed:17786022

Descripteurs français

English descriptors

Abstract

Upregulation of autophagy may have therapeutic benefit in a range of diseases that includes neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington's disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in Huntington's disease cell models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.

DOI: 10.4161/auto.4898
PubMed: 17786022


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.</title>
<author>
<name sortKey="Floto, R Andres" sort="Floto, R Andres" uniqKey="Floto R" first="R Andres" last="Floto">R Andres Floto</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sarkar, Sovan" sort="Sarkar, Sovan" uniqKey="Sarkar S" first="Sovan" last="Sarkar">Sovan Sarkar</name>
</author>
<author>
<name sortKey="Perlstein, Ethan O" sort="Perlstein, Ethan O" uniqKey="Perlstein E" first="Ethan O" last="Perlstein">Ethan O. Perlstein</name>
</author>
<author>
<name sortKey="Kampmann, Beate" sort="Kampmann, Beate" uniqKey="Kampmann B" first="Beate" last="Kampmann">Beate Kampmann</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
<author>
<name sortKey="Rubinsztein, David C" sort="Rubinsztein, David C" uniqKey="Rubinsztein D" first="David C" last="Rubinsztein">David C. Rubinsztein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007 Nov-Dec</date>
<idno type="RBID">pubmed:17786022</idno>
<idno type="pmid">17786022</idno>
<idno type="doi">10.4161/auto.4898</idno>
<idno type="wicri:Area/Main/Corpus">001676</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001676</idno>
<idno type="wicri:Area/Main/Curation">001676</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001676</idno>
<idno type="wicri:Area/Main/Exploration">001676</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.</title>
<author>
<name sortKey="Floto, R Andres" sort="Floto, R Andres" uniqKey="Floto R" first="R Andres" last="Floto">R Andres Floto</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sarkar, Sovan" sort="Sarkar, Sovan" uniqKey="Sarkar S" first="Sovan" last="Sarkar">Sovan Sarkar</name>
</author>
<author>
<name sortKey="Perlstein, Ethan O" sort="Perlstein, Ethan O" uniqKey="Perlstein E" first="Ethan O" last="Perlstein">Ethan O. Perlstein</name>
</author>
<author>
<name sortKey="Kampmann, Beate" sort="Kampmann, Beate" uniqKey="Kampmann B" first="Beate" last="Kampmann">Beate Kampmann</name>
</author>
<author>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</author>
<author>
<name sortKey="Rubinsztein, David C" sort="Rubinsztein, David C" uniqKey="Rubinsztein D" first="David C" last="Rubinsztein">David C. Rubinsztein</name>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="ISSN">1554-8627</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Autophagy (drug effects)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Drosophila (metabolism)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Huntington Disease (drug therapy)</term>
<term>Huntington Disease (pathology)</term>
<term>Luciferases, Bacterial (metabolism)</term>
<term>Macrophages (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Mycobacterium bovis (drug effects)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Sirolimus (antagonists & inhibitors)</term>
<term>Sirolimus (pharmacology)</term>
<term>Sirolimus (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Drosophila (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Luciférases des bactéries (métabolisme)</term>
<term>Macrophages (métabolisme)</term>
<term>Maladie de Huntington (anatomopathologie)</term>
<term>Maladie de Huntington (traitement médicamenteux)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mycobacterium bovis (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (antagonistes et inhibiteurs)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sirolimus (toxicité)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Luciferases, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Maladie de Huntington</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Mycobacterium bovis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Huntington Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
<term>Mycobacterium bovis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Drosophila</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Drosophila</term>
<term>Luciférases des bactéries</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Huntington Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Maladie de Huntington</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Genes, Reporter</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Molecular Structure</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Gènes rapporteurs</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Upregulation of autophagy may have therapeutic benefit in a range of diseases that includes neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington's disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in Huntington's disease cell models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17786022</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1554-8627</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>3</Volume>
<Issue>6</Issue>
<PubDate>
<MedlineDate>2007 Nov-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.</ArticleTitle>
<Pagination>
<MedlinePgn>620-2</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Upregulation of autophagy may have therapeutic benefit in a range of diseases that includes neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington's disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in Huntington's disease cell models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Floto</LastName>
<ForeName>R Andres</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sarkar</LastName>
<ForeName>Sovan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perlstein</LastName>
<ForeName>Ethan O</ForeName>
<Initials>EO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kampmann</LastName>
<ForeName>Beate</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>Stuart L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rubinsztein</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>G0600194</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>G0600194(77639)</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>077273</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>064354</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>GM38627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>G108/485</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>N01-CO-12400</GrantID>
<Acronym>CO</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.14.14.3</RegistryNumber>
<NameOfSubstance UI="D049453">Luciferases, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004330" MajorTopicYN="N">Drosophila</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006816" MajorTopicYN="N">Huntington Disease</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049453" MajorTopicYN="N">Luciferases, Bacterial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009163" MajorTopicYN="N">Mycobacterium bovis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17786022</ArticleId>
<ArticleId IdType="pii">4898</ArticleId>
<ArticleId IdType="doi">10.4161/auto.4898</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kampmann, Beate" sort="Kampmann, Beate" uniqKey="Kampmann B" first="Beate" last="Kampmann">Beate Kampmann</name>
<name sortKey="Perlstein, Ethan O" sort="Perlstein, Ethan O" uniqKey="Perlstein E" first="Ethan O" last="Perlstein">Ethan O. Perlstein</name>
<name sortKey="Rubinsztein, David C" sort="Rubinsztein, David C" uniqKey="Rubinsztein D" first="David C" last="Rubinsztein">David C. Rubinsztein</name>
<name sortKey="Sarkar, Sovan" sort="Sarkar, Sovan" uniqKey="Sarkar S" first="Sovan" last="Sarkar">Sovan Sarkar</name>
<name sortKey="Schreiber, Stuart L" sort="Schreiber, Stuart L" uniqKey="Schreiber S" first="Stuart L" last="Schreiber">Stuart L. Schreiber</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Floto, R Andres" sort="Floto, R Andres" uniqKey="Floto R" first="R Andres" last="Floto">R Andres Floto</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001657 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001657 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17786022
   |texte=   Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17786022" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020